If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+260t-195
We move all terms to the left:
0-(-16t^2+260t-195)=0
We add all the numbers together, and all the variables
-(-16t^2+260t-195)=0
We get rid of parentheses
16t^2-260t+195=0
a = 16; b = -260; c = +195;
Δ = b2-4ac
Δ = -2602-4·16·195
Δ = 55120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{55120}=\sqrt{16*3445}=\sqrt{16}*\sqrt{3445}=4\sqrt{3445}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-260)-4\sqrt{3445}}{2*16}=\frac{260-4\sqrt{3445}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-260)+4\sqrt{3445}}{2*16}=\frac{260+4\sqrt{3445}}{32} $
| 5(2x+1)=3(x+4)-5, | | 31x+21=31x+21 | | 5(2x+1)=3(x+4)-5,x= | | 2x=14=60 | | 2y-84-240,y=162 | | (12x-4)=(6x+8) | | 2z+2=3z+15 | | -5m+3=18 | | 3z-6=2z+10 | | 32/15=r+1/5 | | 2/5r=4/7 | | 2z+2=3z+21 | | 0.8x3.2=2.56 | | -16t2+38t+5=0 | | x^2+3x+4=-4x-6 | | x-1,2=-5 | | -3x2+14x-8=0 | | -8x+58x=4 | | x2+17x–84=0 | | X2+.2x+0.01=0 | | .0625=0.5^x | | x+2,5=5 | | 27x+225=900 | | (3x-2)+(x+8)=180 | | 11x-29x=19 | | x+99=10 | | x+2x+16=180 | | 19x+233=900 | | 60x(4x^2+9x-8)=0 | | 2x=-0,5 | | x+2,2=0,1 | | 7(3x-4)-21=28 |